Sustainable value chain and material use in road construction

Marit Fladvad, SINTEF Community Lillian Mathisen, SINTEF Community



- Introduction:
 - Marit & Lillian
 - SINTEF
- The *Sustainable Road Construction* project in general
- Road material research in the project
- Sustainability considerations in the project

About us

Marit Fladvad

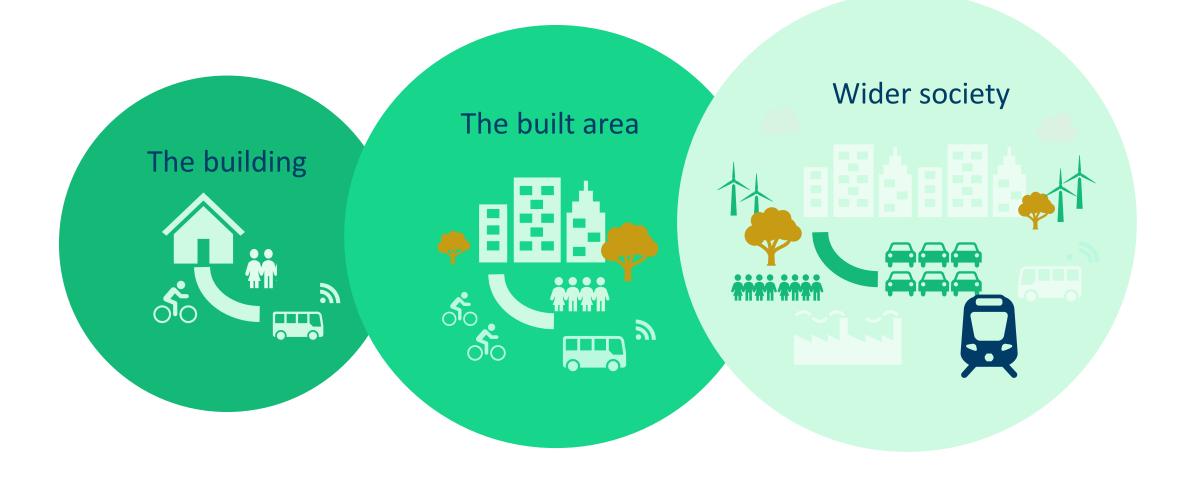
- Research scientist at SINTEF Community
- 10 years experience from the Norwegian Public Roads Administration
- MSc in Civil Engineering Highway engineering
 - Thesis on compaction of unbound granular materials
- PhD in Geology and Mineral Resource Engineering
 - Thesis on utilisation of unbound crushed aggregates for road construction

Lillian Mathisen

- Senior advisor at SINTEF Community
- 20 years in the Norwegian asphalt industry
- MSc in asphalt
 - Recycling
 - Frictional properties
- PhD in Unbound Granular Base materials
 - Deformation properties
 - Thaw weakening
 - Mineralogy

ONE OF EUROPE'S LARGEST INDEPENDENT RESEARCH ORGANISATIONS

367,5 million	2200	6400	3300
EUR turnover	employees	projects	customers
INTERNATIONAL 70,7 million EUR	NATIONALITIES 80	PUBLICATIONS (INCL. DISSEMINATION)	



N AN AN

Vision: Technology for a better society

Sustainable value chain and material use in road construction

2023 - 2025

siva

FOAMROX®

Statens vegvesen

•

Project goal and milestones

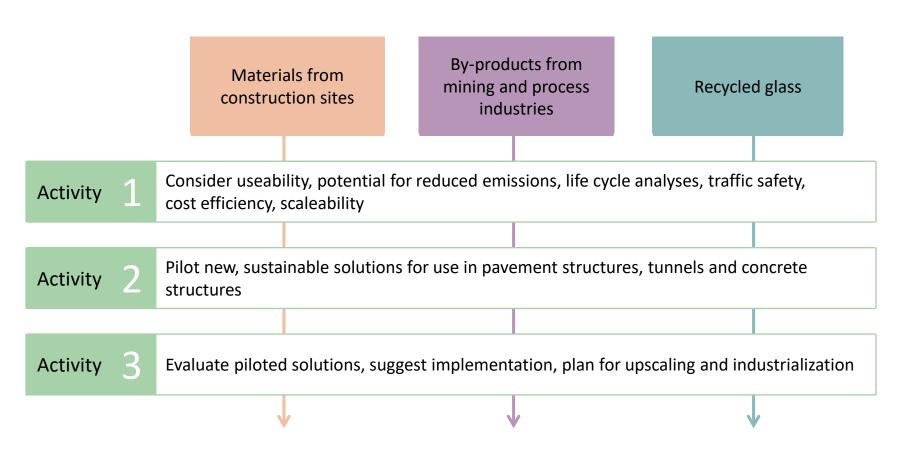
Main goal

Develop new Norwegian sustainable technology and expertise with a large export potential, which contributes to Nye Veier reaching the goal of reducing greenhouse gas emissions from the construction phase of road projects by 50% by 2030

Milestone 1

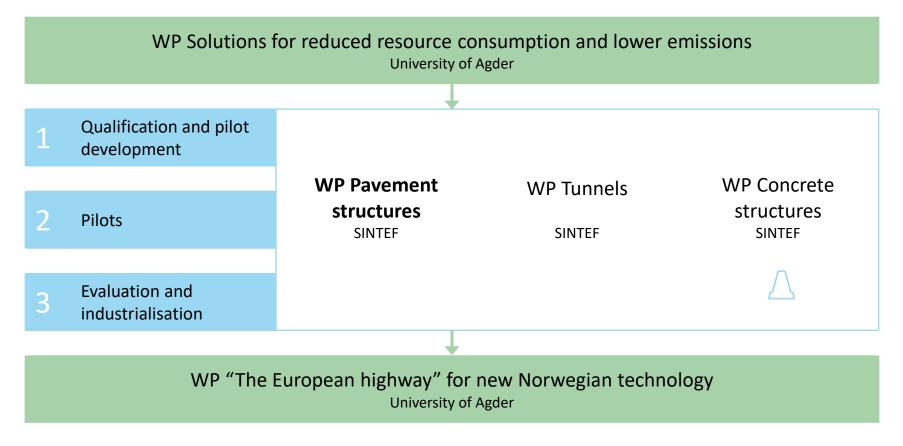
Develop research-based knowledge about optimal solution choices and design to reduce greenhouse gas emissions in road construction

Milestone 2


Test, verify, pilot and industrialize a **minimum of 10** new climate-friendly and resource-efficient solutions with large export potential based on reuse of materials and by-products from industry

Milestone 3

Build a strong **value chain** across disciplines, technology areas and competence environments to reduce parriers and identify effective incentive schemes that accelerate the journey from idea to market nationally and internationally



Project organizing

Project organizing

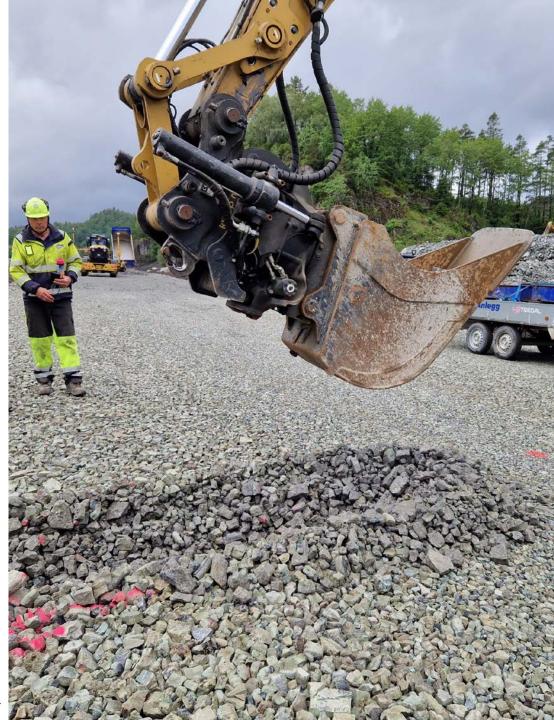
Piloting of:

- sprayed concrete with recycled aggregates and reduced cement content
- tunnel elements made of recycled glass
- prefabricated technical buildings made of recycled glass
- rock injection materials with reduced cement content

WP Concrete structures

Piloting of:

- Concrete with aggregates from recycled concrete
- Concrete with recycled aggregates from other sources
- Concrete with reduced cement content, slag as concrete binder



[&] WP Road construction

Piloting of:

- more environmentally friendly asphalt materials based on recycled and alternative materials
- optimalisation of material production at construction sites to increase the use of local materials
- secondary materials recycled excavation materials and by-products from process industry – to replace crushed rock

Relevant subjects for WP Road structures

Pilot 3 Pilot 2 Pilot 3 Pilot 1 Asphalt with high Slag as unbound Additives in asphalt Slag in asphalt share of reuse material Mass balance when **Recycled excavation** material as road producing crushed **Tunnel surplus** Aggregate quality rock at the based on MWD data materials construction construction site material

BÆREKRAFTIG VERDIKJEDE & MATERIALBRUK I VEGBYGGING

BÆREKRAFTIG VERDIKJEDE & MATERIALBRUK I VEGBYGGING

About SiMn slag from Eramet

- Manganese is an alloy used in steel production
- Eramet Norway produces 180 000 tonnes silicomanganese (SiMn) at their smelting plant in Kvinesdal
- This results in 220 000 tonnes of slag byproduct marketed as Silica Green Stone (SiGS)
- Eramet is exploring many different areas for making new products from their surplus by-products

⁶ SiMn slag production and quality

- When the melted and separated ore cools down, the result is a "new" rock with the same mineral content as the ore minus silica and manganese.
- The slag generation and cooling process was monitored by a student during the summer of 2023.
 - Quality assessment by road construction standards
- Targeted material production based on the best quality slag
 - Refinement through crushing and screening
 - New quality assessment by road construction standards

Pilot 1: SiMn slag as unbound aggregates

SiMn slag was tested as a subbase layer at E39 in Lyngdal (June 2024)

22/125 mm material produced through screening (not crushing)

Successful pilot – all quality requirements were met

Denne steinen kan revolusjonere norsk vegbygging

Steinen heiter Silica Greenstone og kan bidra til ei meir berekraftig vegutbygging. Men førebels er det forbode å bruke han.

Ein ny type stein kan bidra til at vi kan spare fjell og berg når vi bygger nye vegar.

NRK:

"This rock can make a revolution in Norwegian road construction"

Faksimile: NRK 22. juni 2024

M Tom Nicolai Kolstad

Publisert 22. juni kl. 13:37

Journalist

Pilot X: SiMn slag as asphalt aggregates

Next step: Testing SiMn slag as aggregates in asphalt

Challenges:

- Higher quality requirements for aggregates
- Compatibility with binder
- Adhesion between aggregates and binder

Hopefully a new pilot for 2025

Pilot 2: Local wood fiber in asphalt mixture

- Fiber is added to asphalt to improve adhesion between aggregates and binder
- Traditionally, fibers are made from cellulose from recycled paper
 - Contains contaminations and fillers from the recycled paper
 - Pellets using traditional asphalt binders
 - Imported to Norway
- Rygene-Smith & Thommesen has developed a wood fiber designed specifically for use in asphalt
 - Origin: Saw mill chips
 - Pellets using green binder (bio binder)
 - Norwegian producer

Pilot 2: Local wood fiber in asphalt mixture

- Fiber is added to asphalt to improve adhesion between aggregates and binder
- Comparing two wood fiber pellets to a common fiber type
- Tested at E39 in Møre og Romsdal with Veidekke as the asphalt contractor

Pilot 3: 100 % circular asphalt mixture

A combination of several solutions into one asphalt mixture:

- Recycled aggregates
- High content of recycled asphalt
- Recycled bitumen
- Bio binder

Goal:

• An asphalt with no addition of new quarried rock materials or new oil-based bitumen

Asphalt contractor: Velde

The 100 % circular asphalt mixture will reduce CO_2 emissions, but more importantly reduce consumption of nature and resources

A balance between available materials

Under construction now at E39 in Lyngdal

• 400 m pilot section with full asphalt construction in three layers

Vision for the future circular road: A nature-positive road

- DP 2.1: Life cycle assessment (LCA) for the pilot concepts
- DP 2.2: Circularity assessment for the pilot concepts
- DP 2.3: Optimizing concept choices industry roadmap for better road construction choices

Figure: Allen-Sader et al. (2023) https://www.wbcsd.org/news/exploring-nature-positive-buildings/

BÆREKRAFTIG VERDIKJEDE & MATERIALBRUK I VEGBYGGING

WP "European highway" for new technology

Collecting data from

- Pilots in the Sustainable road construction project
- Tenders, contracts and business models in genereal

Questions:

- How is innovations implemented in the construction business?
- What works? What didn't work?
- Which incentives contribute to success?
- Which obstacles were met and handled? Which obstacles were show-stoppers?

	WP Solutions for reduced resource consumption and lower emissions University of Agder					
1	Qualification and pilot development					
		WP Pavement	WP Tunnels	WP Concrete		
2	Pilots	structures SINTEF	SINTEF	structures SINTEF		
3	Evaluation and industrialisation			\bigtriangleup		
WP "The European highway" for new Norwegian technology University of Agder						

Sustainable value chain and material use in road construction

2023 - 2025